

Assessment of Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Fischer-Tropsch Diesel

Michael Wang
Center for Transportation Research
Argonne National Laboratory

Workshop on Fischer-Tropsch Diesel Rulemaking Office of FreedomCar and Vehicle Technologies U.S. Department of Energy

Washington, D.C., October 16, 2002

GREET Was Used for This Study

Argonne developed the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model for WTW analyses

- The GREET model and its documents are available at http://greet.anl.gov
- ➤ There are about 350 GREET users worldwide including governmental agencies, industries, universities, and research institutions

WTP Stages of Fischer-Tropsch Diesel

Key Issues for Estimating FTD WTW Energy Use and GHG Emissions

- Energy and carbon efficiencies of FTD plants (efficiencies are defined as output energy or carbon divided by input energy or carbon)
- FTD plant general designs
 - Standalone to produce FTD, naphtha, and other products
 - Co-generation of steam and/or electricity for export outside of plants
- Post-synthesis refining choices
 - Affect product slate and product quality
 - Ultimately affect WTW energy efficiencies and GHG emissions
- Natural gas feeds
 - North American gas
 - Non-North American gas
 - Non-North American flared gas
- Combustion efficiencies of FTD vehicles (which was not addressed in Argonne's study)

WTP Stages of Petroleum Diesel Fuel Cycle

Boundary of FTD Plants for WTP Assessment

? here means optional

CENTER FOR TRANSPORTATION RESEARCH Key Parametric Assumptions in This Study

	Min	Mean	Max
Petroleum recovery efficiency (%)	96.0	98.0	99.0
Diesel refining efficiency (%): 350 ppm S	88.0	89.0	90.0
Diesel refining efficiency (%): 15 ppm S	85.0	87.0	89.0
NG recovery efficiency (%)	96.0	97.5	99.0
NG processing efficiency (%)	96.0	97.5	99.0
Standalone FTD plant efficiency (%)	54.0	61.0	68.0
Electric co-gen. FTD plant: efficiency (%)	49.0	53.0	57.0
Electric credit: kWh/106 Btu produced	16.6	23.6	30.5
Steam co-gen. FTD plant: efficiency (%)	49.0	53.0	57.0
Steam credit: 10 ³ Btu/10 ⁶ Btu produced	189	268	347
FTD plant carbon efficiency (%)	62.5	71.3	80.0

WTW Total Energy (Virtually All Fossil Energy) Results: 10⁶ Btu/10⁶ Btu Produced and Used

WTW Petroleum Use Results: 10⁶ Btu/10⁶ Btu Produced and Used

WTW GHG Emissions Results: grams/10⁶ Btu Produced and Used

Conclusions

- For each unit of FTD available for use in vehicles, its production consumes more total energy and fossil energy than production of petroleum diesel
- However, use of FTD almost eliminates petroleum use, relative to use of petroleum diesel
- Production of FTD causes higher GHG emissions than refining petroleum diesel. With export of steam and/or electricity, however, GHGs can be reduced to levels comparable to petroleum diesel

Note: Use of otherwise flared gas results in large energy and GHG emission reduction benefits

Conclusions (cont.)

- Combustion of FTD yields lower GHGs than combustion of petroleum diesel
- WTW GHGs from FTD appear to be typically somewhat higher than for petroleum diesel but in the most favorable cases they can be comparable or somewhat lower

Note: calculations do not reflect differential in per mile Btu consumption

